Imagination Developers Connection

PowerVR Graphics Keynote

Rys Sommefeldt

PowerVR Rogue Hardware

PowerVR Rogue Recap

Optional secondary message

- Formally announced at CES 2012
- Tile-based deferred renderer
 - Building on technology proven over 5 previous generations
- USC Universal Shading Cluster
 - New scalar SIMD shader core
 - General purpose compute is a first class citizen in the core ...
 - ... while not forgetting what makes a shader core great for graphics

TBDR *Tile-based*

Tile-based

- Split each render up into small tiles (32x32 for the most part)
- Bin geometry after vertex shading into those tiles
- Tile-based rasterisation and pixel shading
- Keep all data access for pixel shading on chip

Deferred rasterisation

- Don't actually get the GPU to do any pixel shading straight away
- HW support for fully deferred rasterisation and then pixel shading
- Rasterisation is pixel accurate

6

Bandwidth savings across all phases of rendering

- Only fetch the geometry needed for the tile
- Only process the visible pixels in the tile

Efficient processing

End result

- Maximise available computational resources
- Do the best the hardware can with bandwidth

Maximising core efficiency

Lighting up the USC less often is always going to be a saving

Minimising bandwidth

- Texturing less is a fantastic way to save power
- Geometry fetch and binning is often more than 10% of per-frame bandwidth
- Saves bandwidth for other parts of your render

Rogue USC Architectural Building Block

- Basic building block of the Rogue architecture
- Laid out in pairs, with a shared TPU
- 1, 0.5 and 0.25 USC designs are special
 - Different balance in the design
 - Tend to find their way into non-gaming applications

- 16-wide in hardware
- 32-wide branch granularity
 - We run half a task/warp per clock
- Scalar SIMD
- Optimised ALU pipeline
 - Mix of F32, F16, integer, floating point specials, logic ops

Configurable in the IP core

- F16 paths were sometimes optional, thankfully not any more
- F16 paths performance increased significantly after the first generation

Performance in your shader

- F32 paths are dual FMAD
- F16 paths can do different things per cycle depending on shader
- All up to the compiler
- ISA is available for you to interrogate though, with disassembling compilers

Rogue USC - Scalar

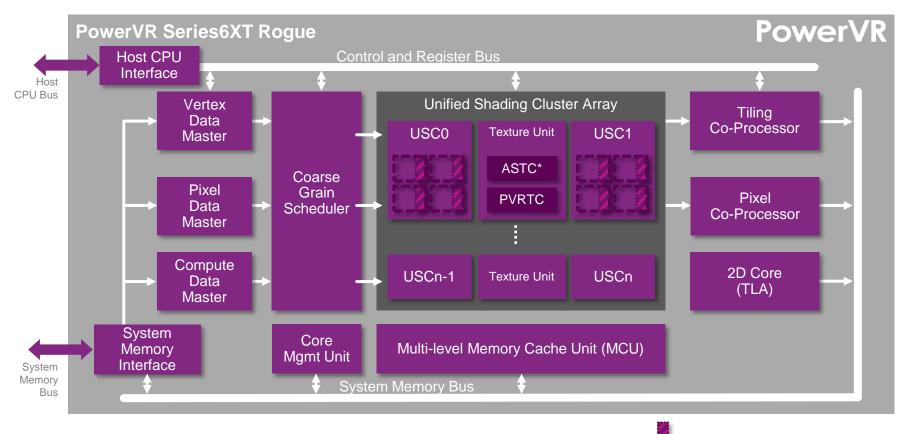
- Hard to understate what a benefit this is
- Seems obvious to do, right?
- Vector architectures are just hard to program well
- Scalar isn't a free lunch
- Makes performance a lot more predictable for you

Rogue USC *Programmable output registers*

- The pixel output registers in the ISA are read/write
- One per pixel
- Width depends on IP core
- We expose it programmatically with Pixel Local Storage
 - Worked closely with ARM (thanks, Jan-Harald!)
 - Doesn't matter that we hate their guts*, still need to make life great for developers

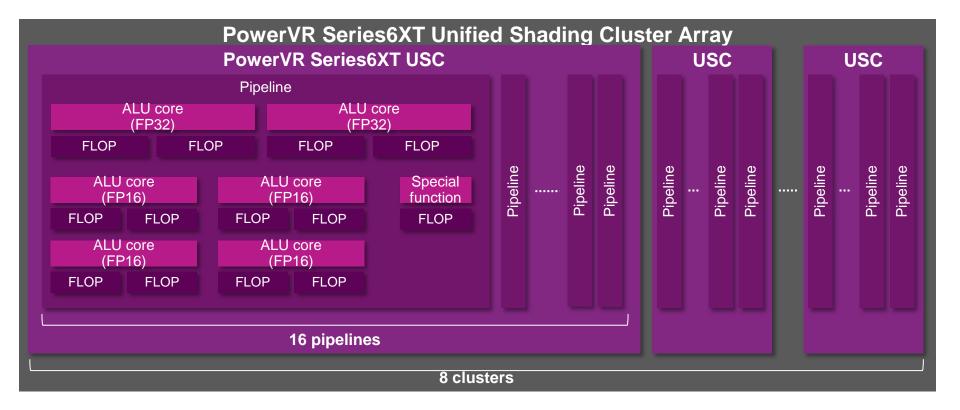
Evolution

Health Warning: Really Bad Diagrams[™]



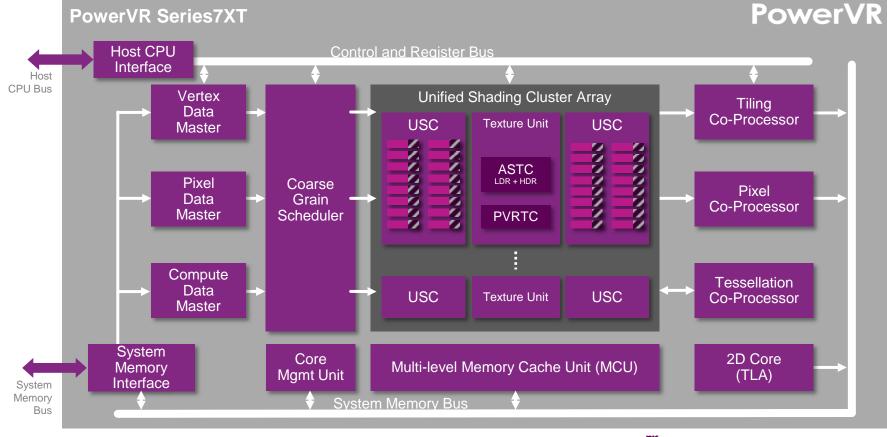
Rogue Evolution

- Architecture has changed quite a bit over time
- Rogue in 2010 still mostly looks like a Rogue today
- Significant evolutionary changes across the architecture
- Lots of it driven by developers before the IP is baked
- Lots of it driven by also analysing your stuff anyway

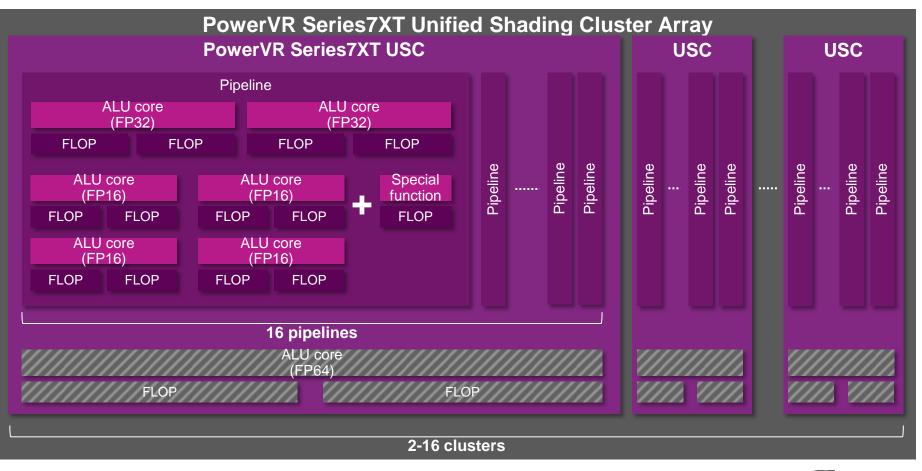

@PowerVRInsider | #idc15

Extra low power GFLOPS

Supports both LDR and HDR ASTC formats


Series6 to Series6XT

Lots of lessons learned


- Improved scheduler
- Streamlined ISA
- Improved compute task efficiency
- Completely new F16 datapath
- Improved front-end for sustained geometry performance
- ASTC

Extra low power GFLOPS

Series6XT to Series7XT

Adding features and smoothing off rough edges

- Changed how the architecture scales
- Improved USC
- Streamlined ISA
- Features
 - Hardware tessellation
 - DX11-compliant USC (precision mainly)
 - FP64

facebook.com/imgtec

: 🄰 @PowerVRInsider | #idc15

22

Into the future

- Exciting changes being worked on across the architecture
 - USC
 - Front-end
 - Scaling
 - Stuff you want!
- You can help
 - We love feedback about the architecture and how it could best fit what you're doing
 - Don't be shy

Live Long, and Prosper

www.imgtec.com/idc